离语

semaphore

首页 >> 离语 >> 离语最新章节(目录)
大家在看豪门婚宠:兽性老公夜夜撩 傲妃难驯:神王,宠上瘾 空间在手:捡个王爷来种田 逆天萌兽:绝世妖女倾天下 火爆药妃:邪王太闷骚 芙蓉女 九天神龙诀 觉醒献祭系统,踏向无敌仙路 彪悍农女有空间 重生农家小娘子 
离语 semaphore - 离语全文阅读 - 离语txt下载 - 离语最新章节 - 好看的古言小说

第300章 丸辣

上一章书 页下一页阅读记录

文本挖掘与分析名词解释10道题,英文缩写,例如RNN,LDA,MLP,FNN模型和算法的理解(word2vec等模型原理),损失函数,语言模型的概念,代码类:根据公式/输出写源代码交叉熵损失设置参数解决数据不平衡1自然语言处理自然语言处理研究实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理技 术发展经历了基于规则的方法、基于统计学习的方法和基于深度学习的方法三个阶段。自然语言处理 由浅入深的四个层面分别是形式、语义、推理和语用,当前正处于由语义向推理的发展阶段。2文本分类文本分类是机器对文本按照一定的分类体系自动标注类别的过程, 也是自然语言处理最早的应用领域之一。你能想到哪些自动文本分类 应用? 垃圾邮件分类,新闻类型分类,...情感分析情感分析也可以认为是文本分类的一个子类型。情感分析往往应 用于电商的用户评价分析,微博等自媒体的用户留言倾向分析,或者 公共事件的舆情分析。3信息抽取信息抽取是采用机器学习算法从非结构化文本中自动抽取出用户感兴趣的内容,并进 行 结构化处理。例如命名实体识别、实体关系抽取、事件抽取、因果关系抽取文本生成包括自动文章撰写、自动摘要生成等内容4信息检索信息检索指信息按一定的方式组织起来,并根据用户的需要找出有关的信息的过程和技术。搜 索引擎是当前主流的信息检索方式,从最初的关键词匹配算法到如今的语义检索技术, 用户已经能够随心所欲的检索自 己所需的信息。

中心度:在图论和网络分析中,中心度用来衡量节点在图中的重要 性,中心度并不是节点本身带有的属性,而是一种结构属性, 是在图或网络结构下节点才具有的属性。中心度可用来解决不同领域的问题: 例如在社交网络中寻找影响力最大的用户,在互联网或城市网络中寻找 关键的基础设施,以及在疾病网络中发现超级传播者度中心度:指节点与其他节点相连边的数量,即通过节点的邻居 数目(局部信息)来计算节点度重要程度。 基本思想:节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为Modularity Optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为Community Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值ΔQ是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

这章没有结束,请点击下一页继续阅读!

喜欢离语请大家收藏:(m.ailewx.com)离语爱乐文学更新速度全网最快。

上一章目 录下一页存书签
站内强推巡山:从女儿骑虎炸街开始 报!王爷,王妃开着战斗机杀过来 重回地球八千年 开局绝对掌控,我自研长生 我一个法爷,无限禁咒很正常吧? 斗罗:绝世之日月雨浩 护国八年,未婚妻打来求救电话 灾后第六年,我靠发豆芽攒下农场 遥远呼声的彼岸 快穿之我家男神有点飘 武神皇庭 凰洛2 女武神养成计划 都市之至尊神豪系统 男神让我强化出来了 盛世暖婚:甜妻宠上天 绝地求生之LOL怪穿 三国:开局送灵帝一顶帽子! 从吕秀才开始武林外传 衣锦大明 
经典收藏灵界逆袭云汐仙途 沙雕小师妹原来是疯批大佬 我滴个良人呐 墨骨云香 穿书后,我在侯府佛系逆袭 小师妹玩转抖音,老祖竟是榜一 大玉儿重生镇国长公主 穿成恶毒后娘,我靠养崽续命 爆笑医妃:夫君今晚要动粗 倾世羽狐古怪九小姐 娇棠 皇后是朕的心尖宠 修仙大佬退休后的古代生活 被清冷师兄偏宠,全宗门羡慕哭了 爹,我们这么稳,是不是搞点事 神级奶爸 替身王妃:王爷,妾身不想嫁 她美貌无敌后,疯批点又怎么了 穿成极品农妇后继续极品 临死前亲了死对头之后,被囚宠了 
最近更新驭千机 绑定系统后,带着国家飞飞飞 魂穿古代后,我不当炮灰 穿越之绝世腹黑王妃 嫁给闺蜜后,暴君对我强娶豪夺! 听我心声后,炮灰一家集体虐渣 在四爷后院佛系养娃日常 偏爱小娇妻生生世世 大长公主规矩多质子他还总犯错 非常炸裂,天生锦鲤体质 左手异火右手香表姑娘发疯要干仗 我家香炉通古代,富养美娇女帝 穿越之轮回重生 不如当身自簪缨 新版聊斋志异之媚娘传说 苍凉晚出行,神鬼退避 穿越女儿国同时娶八个老公 换亲你逼的,我一品诰命了你哭什么 换装后人前显圣,挥手间带飞古人 穿书,权臣男主不按套路出牌 
离语 semaphore - 离语txt下载 - 离语最新章节 - 离语全文阅读 - 好看的古言小说